clustering_metrics.monte_carlo.predictions module¶
-
class
clustering_metrics.monte_carlo.predictions.Grid(seed=None)[source]¶ Bases:
object-
iter_clusters()¶
-
-
clustering_metrics.monte_carlo.predictions.auc_xscaled(xs, ys)[source]¶ AUC score scaled to fill x interval
-
clustering_metrics.monte_carlo.predictions.join_clusters(clusters)[source]¶ Reduce number of clusters 2x by joining
-
clustering_metrics.monte_carlo.predictions.relabel_negatives(clusters)[source]¶ Place each negative label in its own class
-
clustering_metrics.monte_carlo.predictions.sample_with_error(label, error_distribution, null_distribution)[source]¶ Return label given error probability and null distributions
error_distribution must be of form {False: 1.0 - p_err, True: p_err}